PID Controller
Ein proportional–integral–derivative controller ist ein Reglertyp der im Bereich der Espressomaschinen zur Regelung der Brühwassertemperatur eingesetzt wird. Die Bezeichnung steht dabei nur für einen bestimmen strukturellen Aufbau des Reglers, die technische Realisierung kann ganz unterschiedlich sein. Er wird oft in Dualboilermaschinen verbaut und ist z.Z. die einzig angewandte Möglichkeit innerhalb eines Grad Kelvin konstante Brühwassertemperatur - unabhängig vom Volumen - zu erzeugen.
Der Name leitet sich aus den drei Regleranteilen ab, welche in jeweils unterschiedliche Weise auf eine Regelgrößenabweichung reagieren.
Im Proportionalteil wirkt die Regelgrößenabweichung, also in unserem Fall die Abweichung von der Soll- zur Isttemperatur, proportional auf die Stellgröße, hier die Heizung des Boilers. Anders ausgedrückt, wird die Regelabweichung mit einem Faktor (dem P-Anteil) multipliziert.
Der Integralteil summiert fortlaufend die vorhandene Regelabweichung auf und diese wirkt dann ebenfalls über einen Faktor (dem I-Anteil) auf die Stellgröße.
Der Differenzialteil nimmt nur die Änderung also die Geschwindigkeit der Reglerabweichung als Grundlage und wirkt wie die anderen Anteile auch über einen Faktor (dem D-Anteil) auf die Stellgröße.
Umgangssprachlich kann man die Wirkungen der drei Anteile in folgender Weise beschreiben:
- Der P-Anteil wirkt auf Grund der gegenwärtigen Abweichung: Je stärker der Ist-Wert vom Sollwert abweicht, um so stärker heizt er, je näher der Ist-Wert dem Sollwert kommt, desto stärker drosselt er die Heizleistung.
- Der I-Anteil berücksichtigt die Vergangenheit: Je länger die Ist-Temperatur zu tief war, um so stärker wird die Heizleistung erhöht.
- Der D-Anteil schaut in die Zukunft: Wenn die Temperatur schnell fällt, wird sie bald zu niedrig sein, also wird stark gegengeheizt.
Die Summe aller drei Regleranteile ergibt dann den PID-Regler.
Problem Temperaturkonstanz
Mit dem Bedürfnis alle Faktoren bei der Espressozubereitung messen und kontrollieren zu können, wurde entdeckt wie sensibel Kaffee auf geringe Schwankungen (+/- 1 Grad Kelvin) in der Brühwassertemperatur reagiert. Mit der Einführung von Messgeräten stellte man selbst in gastronomischen Maschinen Schwankungen von bis zu 8 Kelvin fest. Grund für diese Schwankungen ist die hohe Wärmekapazität der Boiler, die einige Liter fassen. Daraus folgt:
- ein sehr leitungsstarkes Wärmeelement ist nötig
- das Wärmeelement kennt nur den Zustand an oder aus
- erst beim Erreichen des Sollwerts schaltet die Heizung aus
- durch die Trägheit wird das System überhitzt
Ein weiteres Problem bei Zweikreismaschinen ist der Wärmetauscher. Das Wasser im Boiler ist bei diesen Maschinen viel zu heiß um Espresso zu brühen. Deshalb führt ein Rohr mit kalten Frischwasser durch den Boiler, der dieses aufheizt. Damit das Wasser zw. Boiler und Gruppe nicht stehen bleibt, wird ein Kreislauf mittels Wärmesiphon betrieben. An sich eine clevere Erfindung, allerdings ist die Brühtemperatur von den Faktoren Bezugsmenge, Umgebungstemp. und Anz. der Bezüge abhängig.
ein drastisches Beispiel: In Deutschland ist ein Tasse Kaffee mit ca. 180 ml sehr beliebt. Der Boiler einer 2-gruppigen Maschine fasst beispielsweise 14l. Es ist leider immernoch üblich einen Kaffee nicht als Americano zuzubereiten..
nach der Gleichung der Mischungstemperatur ergibt das bei einer Bestellung von 3 Tassen Kaffee eine Temperaturdifferenz von 2,3 Kelvin. Es ist also weder möglich die Temperatur während des Bezugs (Intrashot) konstant zu halten, noch den Bezug danach. Dieser würde ebenfalls zu kalt oder durch Korrektur der Heizung zu heiß sein (Intershot).
Was bringt also ein Boiler, dessen Wasser man auf 1/10 Grad Celsius einstellen kann, aber ständig um diese Temperatur oszilliert?
Vorrausetzungen für ein stabiles System
Die Temperaturmessung sollte genaue reproduzierbare Werte liefern und ohne Zeitverzögerung oder Hysterese arbeiten, denn eine genaue Messung der aktuellen Temperatur liefert die Basis für die Regelung.
Die Faktoren des Regler, also der P-, I-, und D- Anteil, müssen auf die entsprechende Maschine eingestellt werden, da jedes System anders reagiert. Eine Berechnung dieser Anteile wäre aber zu aufwendig und erfordert einiges an theoretischem Wissen. In der Praxis sollte es genügen die Werte experimentell zu ermitteln. Das allgemine Vorgehen ist, erst den P-Anteil zu erhöhen, bis ein schnelles Erreichen der Solltemperatur realisiert ist und danach den D-Anteil zu erhöhen, um das Überschwingen der Temperatur über den Sollwert zu verringern. Zuletzt wird der I-Anteil erhöht, falls immer eine kleine Abweichung von der Solltemperatur erhalten bleibt. Bei der Erhöhung des I-Anteils sollte man vorsichtig zu Werke gehen, da dieser ein sich aufschaukelndes, instabiles System erzeugen kann.
Umsetzung
Dieser Abschnitt behandelt praxisnah am konkreten Beispiel (für Einkreiser), was man braucht. Er ist keine Anleitung zum Selbstbau. Laien oder Menschen mit wenig Erfahrung sollten sich keinesfalls an einen Selbstversuch wagen, bei Basteleien an 230 Volt besteht Lebensgefahr, auch (Haus-) Brände sind schon vorgekommen!
- PID-Regler Der Regler muss einen Eingang für k-Fühler (ungenau) oder besser pt-100-Fühler (genaue Messung möglich) haben. Des weiteren muss ein Ausgang zum Anschluss eines SSR vorhanden sein. Faustregel: Billige Technik misst die Temperatur ungenau, in großen Zeitabständen und genügt deutschen Sicherheitsnormen meist nicht. Für derzeit 14,90.- Euro bekommt man einen China-PID bei Virtualvillage, der deutsche Händler Pohl-Technik verlangt etwas mehr, soll aber auch eine kompetente Telefonberatung bieten.
- SSR: Das Solid-State-Relais schaltet (auf Befehl des PID-Reglers) die Heizung verschleißfrei an und aus. Die meisten Regler haben kein oder kein geeignetes Relais an Bord und brauchen daher zwingend ein SSR. Am besten nimmt man nicht die ganz billigen, sondern ein Relais von Carlo Gavazzi (ca. 10 - 15.- Euro bei Reichelt, Conrad etc.. 25A Schaltleistung sollten für die meisten Maschinen ausreichen.
- Temperaturfühler: Bei einem k-Fühler muss man mit Abweichungen von bis zu 2 Grad rechnen, allerdings sind die Praxiserfahrungen oft besser als die Datenblätter der Fühler aussagen. Fühler kosten 5-15 Euro und werden der Einfachheit halber so an der Boileraußenwand sicher(!) befestigt, dass sie zum Boiler gut wärmeleitend und nach außen hin gut isoliert sind. Es gibt Fühler, die speziell für diese Anwendung geeignet sind, bspw. „Anlegefühler“. Den „besten“ Befestigungsort muss man durch Ausprobieren herausfinden, beginnen kann man auf 2/3 der Boilerhöhe.
- Kabel: Es sollten unbedingt gute, temperaturbeständige Kabel mit der Leistung angepasst ausreichendem Querschnitt sein. Da über die Heizung sehr viel Leistung aufgenommen wird, sollte man Aderendhülsen verwenden und auf zuverlässige Isolation achten.
Wenn man das Ganze erfolgreich zusammengestöpselt hat und ausprobieren will, sollte man den Zielwert zunächst auf bspw. 50 Grad setzen - dann fliegt einem nicht gleich der Boiler um die Ohren, falls man etwas vermurkst hat. Noch ein Tip: Wenn man die Maschinen an einen Fehlerstrom-Schutzschalter hängt (gibt´s auch für die Steckdose so ab 20.- Euro) ist man wenigstens ein bisschen abgesichert.
Einstellung der Parameter für Faule (Faustformelverfahren): http://de.wikipedia.org/wiki/Faustformelverfahren_(Automatisierungstechnik)#Empirische_Dimensionierung
Für Fleißige: http://www.kaffee-netz.de/espresso-und-kaffeemaschinen/26357-pid-parameter-einstellen.html
Am Besten ist es, für erste Tests das System als Zweipunktregler zu betreiben - dann kann man es auf Funktion testen, ohne gleich an der Einstellung der Parameter zu verzweifeln.
Auswirkungen
Wirklich sinnvoll sind PIDs erst mit der gleichzeitigen Benutzung eines Dual-Boiler-Systems.
Durch den Gewinn an Temperaturkonstanz ist es nun endlich möglich feinste Unterschiede in der Zubereitungsart, Kaffeemischungen und verschiedenen Kaffeebohnen mittels Espresso zu degustieren. Dieses Privileg blieb vorher nur dem sogenannten Cupping vorbehalten.